
CS193p

Fall 2017-18

Stanford CS193p
Developing Applications for iOS

Fall 2017-18

CS193p

Fall 2017-18

Today
Animation
UIViewPropertyAnimator
Transitions
Dynamic Animator

CS193p

Fall 2017-18

UIView Animation
Changes to certain UIView properties can be animated over time
frame/center
bounds (transient size, does not conflict with animating center)
transform (translation, rotation and scale)
alpha (opacity)
backgroundColor

Done with UIViewPropertyAnimator using closures
You define some animation parameters and pass an animation block (i.e. closure).
The animation block contains the code that makes the changes to the UIView(s).
The animation block will only animate changes to the above-mentioned UIView properties.
The changes inside the block are made immediately (even though they will appear “over time”).
Most also have another “completion block” to be executed when the animation is done.

CS193p

Fall 2017-18

UIViewPropertyAnimator
Easiest way to use a UIViewPropertyAnimator
class func runningPropertyAnimator(

withDuration: TimeInterval,
delay: TimeInterval,

options: UIViewAnimationOptions,
animations: () -> Void,
completion: ((position: UIViewAnimatingPosition) -> Void)? = nil

)
Note that this is a static (class) function. You send it to the UIViewPropertyAnimator type.
The animations argument is a closure containing code that changes center, transform, etc.
The completion argument will get executed when the animation finishes or is interrupted.

CS193p

Fall 2017-18

UIView Animation
Example
if myView.alpha == 1.0 {

UIViewPropertyAnimator.runningPropertyAnimator(
withDuration: 3.0,

delay: 2.0,
options: [.allowUserInteraction],

animations: { myView.alpha = 0.0 },
completion: { if $0 == .end { myView.removeFromSuperview() } }

)
print(“alpha = \(myView.alpha)”)

}
This would cause myView to “fade” out over 3 seconds (starting 2s from now).
Then it would remove myView from the view hierarchy (but only if the fade completed).
If, within the 5s, someone animated the alpha to non-zero, the removal would not happen.
The output on the console would immediately be … alpha = 0.0
… even though the alpha on the screen won’t be zero for 5 more seconds!

CS193p

Fall 2017-18

UIView Animation
UIViewAnimationOptions
beginFromCurrentState // pick up from other, in-progress animations of these properties
allowUserInteraction // allow gestures to get processed while animation is in progress
layoutSubviews // animate the relayout of subviews with a parent’s animation
repeat // repeat indefinitely
autoreverse // play animation forwards, then backwards
overrideInheritedDuration // if not set, use duration of any in-progress animation
overrideInheritedCurve // if not set, use curve (e.g. ease-in/out) of in-progress animation
allowAnimatedContent // if not set, just interpolate between current and end “bits”
curveEaseInEaseOut // slower at the beginning, normal throughout, then slow at end
curveEaseIn // slower at the beginning, but then constant through the rest
curveLinear // same speed throughout

CS193p

Fall 2017-18

UIView Animation
Sometimes you want to make an entire view modification at once

In this case you are not limited to special properties like alpha, frame and transform
Flip the entire view over UIViewAnimationOptions.transitionFlipFrom{Left,Right,Top,Bottom}
Dissolve from old to new state .transitionCrossDissolve
Curling up or down .transitionCurl{Up,Down}

CS193p

Fall 2017-18

UIView Animation
Example

Flipping a playing card over …
UIView.transition(with: myPlayingCardView,

duration: 0.75,
options: [.transitionFlipFromLeft],

animations: { cardIsFaceUp = !cardIsFaceUp }
completion: nil)

Presuming myPlayingCardView draws itself face up or down depending on cardIsFaceUp
This will cause the card to flip over (from the left edge of the card)

CS193p

Fall 2017-18

Dynamic Animation
A little different approach to animation

Set up physics relating animatable objects and let them run until they resolve to stasis.
Easily possible to set it up so that stasis never occurs, but that could be performance problem.

CS193p

Fall 2017-18

Dynamic Animation
Create a UIDynamicAnimator
var animator = UIDynamicAnimator(referenceView: UIView)
If animating views, all views must be in a view hierarchy with referenceView at the top.

Create and add UIDynamicBehavior instances
e.g., let gravity = UIGravityBehavior()
animator.addBehavior(gravity)
e.g., collider = UICollisionBehavior()
animator.addBehavior(collider)

CS193p

Fall 2017-18

Dynamic Animation
Add UIDynamicItems to a UIDynamicBehavior
let item1: UIDynamicItem = ... // usually a UIView
let item2: UIDynamicItem = ... // usually a UIView
gravity.addItem(item1)
collider.addItem(item1)
gravity.addItem(item2)

item1 and item2 will both be affect by gravity
item1 will collide with collider’s other items or boundaries, but not with item2

CS193p

Fall 2017-18

Dynamic Animation
UIDynamicItem protocol

Any animatable item must implement this …
protocol UIDynamicItem {

var bounds: CGRect { get } // essentially the size
var center: CGPoint { get set } // and the position
var transform: CGAffineTransform { get set } // rotation usually
var collisionBoundsType: UIDynamicItemCollisionBoundsType { get set }
var collisionBoundingPath: UIBezierPath { get set }

}
UIView implements this protocol
If you change center or transform while the animator is running,

you must call this method in UIDynamicAnimator …
func updateItemUsingCurrentState(item: UIDynamicItem)

CS193p

Fall 2017-18

Behaviors
UIGravityBehavior
var angle: CGFloat // in radians; 0 is to the right; positive numbers are clockwise
var magnitude: CGFloat // 1.0 is 1000 points/s/s

UIAttachmentBehavior
init(item: UIDynamicItem, attachedToAnchor: CGPoint)
init(item: UIDynamicItem, attachedTo: UIDynamicItem)
init(item: UIDynamicItem, offsetFromCenter: CGPoint, attachedTo[Anchor]…)
var length: CGFloat // distance between attached things (this is settable while animating!)
var anchorPoint: CGPoint // can also be set at any time, even while animating
The attachment can oscillate (i.e. like a spring) and you can control frequency and damping

CS193p

Fall 2017-18

Behaviors
UICollisionBehavior
var collisionMode: UICollisionBehaviorMode // .items, .boundaries, or .everything

If .items, then any items you add to a UICollisionBehavior will bounce off of each other

If .boundaries, then you add UIBezierPath boundaries for items to bounce off of …
func addBoundary(withIdentifier: NSCopying, for: UIBezierPath)
func addBoundary(withIdentifier: NSCopying, from: CGPoint, to: CGPoint)
func removeBoundary(withIdentifier: NSCopying)
var translatesReferenceBoundsIntoBoundary: Bool // referenceView’s edges
NSCopying means NSString or NSNumber, but remember you can as to String, Int, etc.

CS193p

Fall 2017-18

Behaviors
UICollisionBehavior

How do you find out when a collision happens?
var collisionDelegate: UICollisionBehaviorDelegate

… this delegate will be sent methods like …
func collisionBehavior(behavior: UICollisionBehavior,

began/endedContactFor: UIDynamicItem,
withBoundaryIdentifier: NSCopying // with:UIDynamicItem too

at: CGPoint)

The withBoundaryIdentifier is the one you pass to addBoundary(withIdentifier:).

CS193p

Fall 2017-18

Behaviors
UISnapBehavior
init(item: UIDynamicItem, snapTo: CGPoint)
Imagine four springs at four corners around the item in the new spot.
You can control the damping of these “four springs” with var damping: CGFloat

UIPushBehavior
var mode: UIPushBehaviorMode // .continuous or .instantaneous
var pushDirection: CGVector
… or …
var angle: CGFloat // in radians and positive numbers are clockwise
var magnitude: CGFloat // magnitude 1.0 moves a 100x100 view at 100 pts/s/s

Interesting aspect to this behavior
If you push .instantaneous, what happens after it’s done?
It just sits there wasting memory.
We’ll talk about how to clear that up in a moment.

CS193p

Fall 2017-18

Behaviors
UIDynamicItemBehavior

Sort of a special “meta” behavior.
Controls the behavior of items as they are affected by other behaviors.
Any item added to this behavior (with addItem) will be affected by …
var allowsRotation: Bool
var friction: CGFloat
var elasticity: CGFloat
… and others, see documentation.

Can also get information about items with this behavior ...
func linearVelocity(for: UIDynamicItem) -> CGPoint
func addLinearVelocity(CGPoint, for: UIDynamicItem)
func angularVelocity(for: UIDynamicItem) -> CGFloat

Multiple UIDynamicItemBehaviors affecting the same item(s) is “advanced” (not for you!)

CS193p

Fall 2017-18

Behaviors
UIDynamicBehavior

Superclass of behaviors.
You can create your own subclass which is a combination of other behaviors.
Usually you override init method(s) and addItem and removeItem to call …
func addChildBehavior(UIDynamicBehavior)
This is a good way to encapsulate a physics behavior that is a composite of other behaviors.
You might also add some API which helps your subclass configure its children.

All behaviors know the UIDynamicAnimator they are part of
They can only be part of one at a time.
var dynamicAnimator: UIDynamicAnimator? { get }
And the behavior will be sent this message when its animator changes …
func willMove(to: UIDynamicAnimator?)

CS193p

Fall 2017-18

Behaviors
UIDynamicBehavior’s action property

Every time the behavior acts on items, this block of code that you can set is executed …
var action: (() -> Void)?
(i.e. it’s called action, it takes no arguments and returns nothing)
You can set this to do anything you want.
But it will be called a lot, so make it very efficient.
If the action refers to properties in the behavior itself, watch out for memory cycles.

CS193p

Fall 2017-18

Stasis
UIDynamicAnimator’s delegate tells you when animation pauses

Just set the delegate …
var delegate: UIDynamicAnimatorDelegate
… and you’ll find out when stasis is reached and when animation will resume …
func dynamicAnimatorDidPause(UIDynamicAnimator)
func dynamicAnimatorWillResume(UIDynamicAnimator)

CS193p

Fall 2017-18

Memory Cycle Avoidance
Example of using action and avoiding a memory cycle

Let’s go back to the case of an .instantaneous UIPushBehavior
When it is done acting on its items, it would be nice to remove it from its animator
We can do this with the action var which takes a closure …
if let pushBehavior = UIPushBehavior(items: […], mode: .instantaneous) {

pushBehavior.magnitude = …
pushBehavior.angle = …
pushBehavior.action = {

pushBehavior.dynamicAnimator!.removeBehavior(pushBehavior)
}
animator.addBehavior(pushBehavior) // will push right away

}
But the above has a memory cycle because its action captures a pointer back to itself.
So neither the action closure nor the pushBehavior can ever leave the heap!

CS193p

Fall 2017-18

Aside: Closure Capturing
You can define local variables on the fly at the start of a closure
var foo = { [x = someInstanceOfaClass, y = “hello”] in

// use x and y here
}

These locals can be declared weak
var foo = { [weak x = someInstanceOfaClass, y = “hello”] in

// use x and y here, but x is now an Optional because it’s weak
}

Or they can even be declared “unowned”
unowned means that the reference counting system does count them (or check the count)
var foo = { [unowned x = someInstanceOfaClass, y = “hello”] in

// use x and y here, x is not an Optional
// if you use x here and it is not in the heap, you will crash

}

CS193p

Fall 2017-18

Closure Capture
This is all primarily used to prevent a memory cycle
class Zerg {

private var foo = {
self.bar()

}
private func bar() { . . . }

}
This, too, is a memory cycle. Why?
The closure assigned to foo keeps self in the heap.
That’s because closures are reference types and live in the heap

and they “capture” variables in their surroundings and keep them in the heap with them.
Meanwhile self’s var foo is keeping the closure in the heap.
So foo points to the closure which points back to self which points to the closure.
A cycle.
Neither can leave the heap: there’s always going to be a pointer to each (from the other).

CS193p

Fall 2017-18

class Zerg {
 private var foo = {

 }

 private func bar() { . . . }
}

We can break this with the local variable trick

Closure Capture

[weak weakSelf = self] in
weakSelf?.bar() // need Optional chaining now because weakSelf is an Optional

Now the closure no longer has a strong pointer to self.
So it is not keeping self in the heap with it.
The cycle is broken.

CS193p

Fall 2017-18

class Zerg {
 private var foo = {

 }

 private func bar() { . . . }
}

The local closure variable is allowed to be called self too

Closure Capture

self?.bar() // still need chaining because self is a (local) Optional
[weak self = self] in

There are two different “self” variables here.
The yellow one is local to the closure and is a weak Optional.
The green one is the instance of Zerg itself (and is obviously not weak, nor an Optional).

CS193p

Fall 2017-18

class Zerg {
 private var foo = {

 }

 private func bar() { . . . }
}

The local closure variable is allowed to be called self too

Closure Capture

self?.bar() // still need chaining because self is a (local) Optional
[weak self in

There are two different “self” variables here.
The yellow one is local to the closure and is a weak Optional.
The green one is the instance of Zerg itself (and is obviously not weak, nor an Optional).
You don’t even need the “= self”.
By default, local closure vars are set equal to the var of the same name in their surroundings.

]

CS193p

Fall 2017-18

Memory Cycle Avoidance
Example of using action and avoiding a memory cycle

Even more dramatically, we could use unowned to break a cycle.
The best example of this is back in our push behavior …
if let pushBehavior = UIPushBehavior(items: […], mode: .instantaneous) {

pushBehavior.magnitude = …
pushBehavior.angle = …
pushBehavior.action = { [unowned pushBehavior] in

pushBehavior.dynamicAnimator!.removeBehavior(pushBehavior)
}
animator.addBehavior(pushBehavior) // will push right away

}
The action closure no longer captures pushBehavior.
And we can even use ths local pushBehavior without any Optional chaining (it’s not Optional).
It is safe to mark it unowned because if the action closure exists, so does the pushBehavior.
But we’d better be right. Or kaboom!

CS193p

Fall 2017-18

Demo Code
Download the demo code from today’s lecture.

