
CS193p

Fall 2017-18

Stanford CS193p
Developing Applications for iOS

Fall 2017-18

CS193p

Fall 2017-18

Today
Multiple MVCs

Tab Bar, Navigation and Split View Controllers
Demo: Theme Chooser in Concentration

Timer
Animation
UIViewPropertyAnimator
Transitions

CS193p

Fall 2017-18

MVCs working together

CS193p

Fall 2017-18

Multiple MVCs
Time to build more powerful applications

To do this, we must combine MVCs …

iOS provides some Controllers
whose View is “other MVCs” *

* you could build your own Controller that does this,
but we’re not going to cover that in this course

CS193p

Fall 2017-18

Multiple MVCs
Time to build more powerful applications

To do this, we must combine MVCs …

Examples:
UITabBarController
UISplitViewController
UINavigationController

iOS provides some Controllers
whose View is “other MVCs”

CS193p

Fall 2017-18

UITabBarController
It lets the user choose between different MVCs …

A “Dashboard” MVC

The icon, title and even a “badge value” on these
is determined by the MVCs themselves via their property:
var tabBarItem: UITabBarItem!
But usually you just set them in your storyboard.

CS193p

Fall 2017-18

UITabBarController
It lets the user choose between different MVCs …

A “Health Data” MVC

If there are too many tabs to fit here,
the UITabBarController will automatically
present a UI for the user to manage the overflow!

CS193p

Fall 2017-18

UITabBarController
It lets the user choose between different MVCs …

CS193p

Fall 2017-18

UITabBarController
It lets the user choose between different MVCs …

CS193p

Fall 2017-18

UISplitViewController
Puts two MVCs side-by-side …

A
Calculator

MVC

A
Calculator Graph

MVC

Master Detail

CS193p

Fall 2017-18

UISplitViewController
Puts two MVCs side-by-side …

A
Calculator

MVC

A
Calculator Graph

MVC

Master Detail

CS193p

Fall 2017-18

Pushes and pops MVCs off of a stack (like a stack of cards) …

An “All Settings” MVC

UINavigationController

This top area is drawn by the
UINavigationController

But the contents of the top
area (like the title or any
buttons on the right) are
determined by the MVC
currently showing (in this case,
the “All Settings” MVC)

Each MVC communicates these
contents via its
UIViewController’s
navigationItem property

CS193p

Fall 2017-18

Pushes and pops MVCs off of a stack (like a stack of cards) …

UINavigationController

CS193p

Fall 2017-18

It’s possible to add MVC-
specific buttons here too via
the UIViewController’s
toolbarItems property

Pushes and pops MVCs off of a stack (like a stack of cards) …

A “General Settings” MVC

UINavigationController

CS193p

Fall 2017-18

Pushes and pops MVCs off of a stack (like a stack of cards) …

A “General Settings” MVC

UINavigationController

Notice this “back" button has
appeared. This is placed here
automatically by the
UINavigationController.

CS193p

Fall 2017-18

Pushes and pops MVCs off of a stack (like a stack of cards) …

UINavigationController

CS193p

Fall 2017-18

Pushes and pops MVCs off of a stack (like a stack of cards) …

An “Accessibility” MVC

UINavigationController

CS193p

Fall 2017-18

Pushes and pops MVCs off of a stack (like a stack of cards) …

UINavigationController

CS193p

Fall 2017-18

Pushes and pops MVCs off of a stack (like a stack of cards) …

A “Larger Text” MVC

UINavigationController

CS193p

Fall 2017-18

Pushes and pops MVCs off of a stack (like a stack of cards) …

UINavigationController

CS193p

Fall 2017-18

Pushes and pops MVCs off of a stack (like a stack of cards) …

UINavigationController

CS193p

Fall 2017-18

Pushes and pops MVCs off of a stack (like a stack of cards) …

UINavigationController

CS193p

Fall 2017-18

Pushes and pops MVCs off of a stack (like a stack of cards) …

UINavigationController

CS193p

Fall 2017-18

Pushes and pops MVCs off of a stack (like a stack of cards) …

UINavigationController

CS193p

Fall 2017-18

Pushes and pops MVCs off of a stack (like a stack of cards) …

UINavigationController

CS193p

Fall 2017-18

UINavigationController

I want more features, but it doesn’t make
sense to put them all in one MVC!

CS193p

Fall 2017-18

UINavigationController

So I create a new MVC to
encapsulate that functionality.

CS193p

Fall 2017-18

UINavigationController

We can use a UINavigationController
to let them share the screen.

CS193p

Fall 2017-18

UINavigationController

UINavigationController
The UINavigationController is a

Controller whose View looks like this.

CS193p

Fall 2017-18

UINavigationController

UINavigationController

rootViewController
But it’s special because we can set its

rootViewController outlet to another MVC ...

CS193p

Fall 2017-18

UINavigationController

UINavigationController
... and it will embed that MVC’s

View inside its own View.

CS193p

Fall 2017-18

UINavigationController

UINavigationController

Then a UI element in this View (e.g. a UIButton) can segue to the other
MVC and its View will now appear in the UINavigationController instead.

CS193p

Fall 2017-18

UINavigationController

UINavigationController

We call this kind of segue a
“Show (push) segue”.

CS193p

Fall 2017-18

UINavigationController

UINavigationController

Notice this Back button
automatically appears.

CS193p

Fall 2017-18

UINavigationController

UINavigationController

When we click it, we’ll
go back to the first MVC.

CS193p

Fall 2017-18

UINavigationController

UINavigationController

Notice that after we back out of an MVC,

it disappears (it is deallocated from the heap, in fact).

CS193p

Fall 2017-18

UINavigationController

UINavigationController

CS193p

Fall 2017-18

Accessing the sub-MVCs
You can get the sub-MVCs via the viewControllers property
var viewControllers: [UIViewController]? { get set } // can be optional (e.g. for tab bar)
// for a tab bar, they are in order, left to right, in the array
// for a split view, [0] is the master and [1] is the detail
// for a navigation controller, [0] is the root and the rest are in order on the stack
// even though this is settable, usually setting happens via storyboard, segues, or other
// for example, navigation controller’s push and pop methods

But how do you get ahold of the SVC, TBC or NC itself?
Every UIViewController knows the Split View, Tab Bar or Navigation Controller it is currently in
These are UIViewController properties …
var tabBarController: UITabBarController? { get }
var splitViewController: UISplitViewController? { get }
var navigationController: UINavigationController? { get }
So, for example, to get the detail (right side) of the split view controller you are in …
if let detail: UIViewController? = splitViewController?.viewControllers[1] { … }

CS193p

Fall 2017-18

Pushing/Popping
Adding (or removing) MVCs from a UINavigationController

func pushViewController(_ vc: UIViewController, animated: Bool)
func popViewController(animated: Bool)

But we usually don’t do this. Instead we use Segues. More on this in a moment.

CS193p

Fall 2017-18

Wiring up MVCs
How do we wire all this stuff up?

Let’s say we have a Calculator MVC and a Calculator Graphing MVC
How do we hook them up to be the two sides of a Split View?

(and delete all the extra VCs it brings with it)Just drag out a

Then ctrl-drag from the UISplitViewController to the master and detail MVCs …

CS193p

Fall 2017-18

Wiring up MVCs

CS193p

Fall 2017-18

Wiring up MVCs

CS193p

Fall 2017-18

Wiring up MVCs

CS193p

Fall 2017-18

Wiring up MVCs

CS193p

Fall 2017-18

Wiring up MVCs

CS193p

Fall 2017-18

Wiring up MVCs
But split view can only do its thing properly on iPad/iPhone+

So we need to put some Navigation Controllers in there so it will work on iPhone
The Navigation Controllers will be good for iPad too because the MVCs will get titles
The simplest way to wrap a Navigation Controller around an MVC is with Editor->Embed In

This MVC is selected

CS193p

Fall 2017-18

Wiring up MVCs
But split view can only do its thing properly on iPad/iPhone+

So we need to put some Navigation Controllers in there so it will work on iPhone
The Navigation Controllers will be good for iPad too because the MVCs will get titles
The simplest way to wrap a Navigation Controller around an MVC is with Editor->Embed In

Now that MVC is part of

the View of this UINavigationController

(it’s the rootViewController)

CS193p

Fall 2017-18

Wiring up MVCs
But split view can only do its thing properly on iPad/iPhone+

So we need to put some Navigation Controllers in there so it will work on iPhone
The Navigation Controllers will be good for iPad too because the MVCs will get titles
The simplest way to wrap a Navigation Controller around an MVC is with Editor->Embed In

Now that MVC is part of

the View of this UINavigationController

(it’s the rootViewController)

And the UINavigationController is part of

the View of this UISplitViewController

(it’s the Master, viewControllers[0])

CS193p

Fall 2017-18

Wiring up MVCs
But split view can only do its thing properly on iPad/iPhone+

So we need to put some Navigation Controllers in there so it will work on iPhone
The Navigation Controllers will be good for iPad too because the MVCs will get titles
The simplest way to wrap a Navigation Controller around an MVC is with Editor->Embed In

You can put this MVC in a UINavigationController too

(to give it a title, for example),

but be careful because the Detail of the UISplitViewController

would now be a UINavigationController

(so you’d have to get the UINavigationController’s rootViewController

if you wanted to talk to the graphing MVC inside)

CS193p

Fall 2017-18

Segues
We’ve built up our Controllers of Controllers, now what?

Now we need to make it so that one MVC can cause another to appear
We call that a “segue”

Kinds of segues (they will adapt to their environment)
Show Segue (will push in a Navigation Controller, else Modal)
Show Detail Segue (will show in Detail of a Split View or will push in a Navigation Controller)
Modal Segue (take over the entire screen while the MVC is up)
Popover Segue (make the MVC appear in a little popover window)

Segues always create a new instance of an MVC
This is important to understand
Even the Detail of a Split View will get replaced with a new instance of that MVC
When you segue in a Navigation Controller it will not segue to some old instance, it’ll be new
Going “back” in a Navigation Controller is NOT a segue though (so no new instance there)

CS193p

Fall 2017-18

Segues
How do we make these segues happen?

Ctrl-drag in a storyboard from an instigator (like a button) to the MVC to segue to
Can be done in code as well

CS193p

Fall 2017-18

Segues

Ctrl-drag from the button

that causes the graph to appear

to the MVC of the graph.

CS193p

Fall 2017-18

Segues

Select the kind of segue you want.

Usually Show or Show Detail.

CS193p

Fall 2017-18

Segues

Now click on the segue

and open the Attributes Inspector

CS193p

Fall 2017-18

Segues
Give the segue a unique identifier here.

It should describe what the segue does.

CS193p

Fall 2017-18

Segues
What’s that identifier all about?

You would need it to invoke this segue from code using this UIViewController method
func performSegue(withIdentifier: String, sender: Any?)
(but we almost never do this because we set usually ctrl-drag from the instigator)
The sender can be whatever you want (you’ll see where it shows up in a moment)
You can ctrl-drag from the Controller itself to another Controller if you’re segueing via code
(because in that case, you’ll be specifying the sender above)

More important use of the identifier: preparing for a segue
When a segue happens, the View Controller containing the instigator gets a chance

to prepare the destination View Controller to be segued to
Usually this means setting up the segued-to MVC’s Model and display characteristics
Remember that the MVC segued to is always a fresh instance (never a reused one)

CS193p

Fall 2017-18

The method that is called in the instigator’s Controller
func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “Show Graph”:
 if let vc = segue.destination as? GraphController {
 vc.property1 = …
 vc.callMethodToSetItUp(…)
 }
 default: break
 }
 }
}

Preparing for a Segue

CS193p

Fall 2017-18

The segue passed in contains important information about this segue:

1. the identifier from the storyboard

2. the Controller of the MVC you are segueing to (which was just created for you)

The method that is called in the instigator’s Controller
func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “Show Graph”:
 if let vc = segue.destination as? GraphController {
 vc.property1 = …
 vc.callMethodToSetItUp(…)
 }
 default: break
 }
 }
}

Preparing for a Segue

CS193p

Fall 2017-18

The sender is either the instigating object from a storyboard (e.g. a UIButton)

 or the sender you provided (see last slide) if you invoked the segue manually in code

The method that is called in the instigator’s Controller
func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “Show Graph”:
 if let vc = segue.destination as? GraphController {
 vc.property1 = …
 vc.callMethodToSetItUp(…)
 }
 default: break
 }
 }
}

Preparing for a Segue

CS193p

Fall 2017-18

Here is the identifier from the storyboard (it can be nil, so be sure to check for that case)

Your Controller might support preparing for lots of different segues from different instigators

 so this identifier is how you’ll know which one you’re preparing for

The method that is called in the instigator’s Controller
func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “Show Graph”:
 if let vc = segue.destination as? GraphController {
 vc.property1 = …
 vc.callMethodToSetItUp(…)
 }
 default: break
 }
 }
}

Preparing for a Segue

CS193p

Fall 2017-18

The method that is called in the instigator’s Controller

For this example, we’ll assume we entered “Show Graph” in the Attributes Inspector

 when we had the segue selected in the storyboard

func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “Show Graph”:
 if let vc = segue.destination as? GraphController {
 vc.property1 = …
 vc.callMethodToSetItUp(…)
 }
 default: break
 }
 }
}

Preparing for a Segue

CS193p

Fall 2017-18

The method that is called in the instigator’s Controller

Here we are looking at the Controller of the MVC we’re segueing to

It is Any so we must cast it to the Controller we (should) know it to be

func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “Show Graph”:
 if let vc = segue.destination as? GraphController {
 vc.property1 = …
 vc.callMethodToSetItUp(…)
 }
 default: break
 }
 }
}

Preparing for a Segue

CS193p

Fall 2017-18

The method that is called in the instigator’s Controller

This is where the actual preparation of the segued-to MVC occurs

Hopefully the MVC has a clear public API that it wants you to use to prepare it

Once the MVC is prepared, it should run on its own power (only using delegation to talk back)

func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “Show Graph”:
 if let vc = segue.destination as? GraphController {
 vc.property1 = …
 vc.callMethodToSetItUp(…)
 }
 default: break
 }
 }
}

Preparing for a Segue

CS193p

Fall 2017-18

The method that is called in the instigator’s Controller

It is crucial to understand that this preparation is happening BEFORE outlets get set!

It is a very common bug to prepare an MVC thinking its outlets are set.

func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “Show Graph”:
 if let vc = segue.destination as? GraphController {
 vc.property1 = …
 vc.callMethodToSetItUp(…)
 }
 default: break
 }
 }
}

Preparing for a Segue

CS193p

Fall 2017-18

Preventing Segues
You can prevent a segue from happening too

Just return false from this method your UIViewController …
func shouldPerformSegue(withIdentifier identifier: String?, sender: Any?) -> Bool
The identifier is the one in the storyboard.
The sender is the instigating object (e.g. the button that is causing the segue).

CS193p

Fall 2017-18

Demo
Concentration Theme Chooser

This is all best understood via demonstration
We’ll put the MVCs into navigation controllers inside split view controllers
That way, it will work on both iPad and iPhone devices

CS193p

Fall 2017-18

Timer
Used to execute code periodically

You can set it up to go off once at at some time in the future, or to repeatedly go off
If repeatedly, the system will not guarantee exactly when it goes off, so this is not “real-time”
But for most UI “order of magnitude” activities, it’s perfectly fine
We don’t generally use it for “animation” (more on that later)
It’s more for larger-grained activities

CS193p

Fall 2017-18

Timer
Fire one off with this method …
class func scheduledTimer(

withTimeInterval: TimeInterval,
repeats: Bool,
block: (Timer) -> Void

) -> Timer

Example
private weak var timer: Timer?
timer = Timer.scheduledTimer(withTimeInterval: 2.0, repeats: true) { timer in

// your code here
}
Every 2 seconds (approximately), the closure will be executed.
Note that the var we stored the timer in is weak.
That’s okay because the run loop will keep a strong pointer to this as long as it’s scheduled.

CS193p

Fall 2017-18

Timer
Stopping a repeating timer

We need to be a bit careful with repeating timers … you don’t want them running forever.
You stop them by calling invalidate() on them …
timer.invalidate()
This tells the run loop to stop scheduling the timer.
The run loop will thus give up its strong pointer to this timer.
If your pointer to the timer is weak, it will be set to nil at this point.
This is nice because an invalidated timer like this is no longer of any use to you.

Tolerance
It might help system performance to set a tolerance for “late firing”.
For example, if you have timer that goes off once a minute, a tolerance of 10s might be fine.
myOneMinuteTimer.tolerance = 10 // in seconds
The firing time is relative to the start of the timer (not the last time it fired), i.e. no “drift”.

CS193p

Fall 2017-18

Kinds of Animation
Animating UIView properties

Changing things like the frame or transparency.

Animating Controller transitions (as in a UINavigationController)
Beyond the scope of this course, but fundamental principles are the same.

Core Animation
Underlying powerful animation framework (also beyond the scope of this course).

OpenGL and Metal
3D

SpriteKit
“2.5D” animation (overlapping images moving around over each other, etc.)

Dynamic Animation
“Physics”-based animation.

CS193p

Fall 2017-18

UIView Animation
Changes to certain UIView properties can be animated over time

frame/center
bounds (transient size, does not conflict with animating center)

transform (translation, rotation and scale)
alpha (opacity)

backgroundColor

