
CS193p

Fall 2017-18

Stanford CS193p
Developing Applications for iOS

Fall 2017-18

CS193p

Fall 2017-18

Today
Core Motion

Detecting the position and movement of the device

Demo: Gravity-driven Playing Card

Camera

How to take pictures in your app

Demo: Taking a picture to be our background image in EmojiArt

CS193p

Fall 2017-18

Core Motion
API to access motion sensing hardware on your device

Primary inputs: Accelerometer, Gyro, Magnetometer

Not all devices have all inputs (e.g. only later model devices have a gyro)

Class used to get this input is CMMotionManager

Use only one instance per application (else performance hit)
It is a “global resource,” so getting one via a class method somewhere is okay

Usage

1. Check to see what hardware is available
2. Start the sampling going and poll the motion manager for the latest sample it has
... or ...
1. Check to see what hardware is available
2. Set the rate at which you want data to be reported from the hardware
3. Register a closure (and a queue to run it on) to call each time a sample is taken

CS193p

Fall 2017-18

Core Motion
Checking availability of hardware sensors

var {accelerometer,gyro,magnetometer,deviceMotion}Available: Bool
The “device motion” is a combination of all available (accelerometer, magnetometer, gyro).

We’ll talk more about that in a couple of slides.

Starting the hardware sensors collecting data

You only need to do this if you are going to poll for data.

Generally used when some architecture in your app is already periodic (e.g. animation frames).

func start{Accelerometer,Gyro,Magnetometer,DeviceMotion}Updates()

Is the hardware currently collecting data?

var {accelerometer,gyro,magnetometer,deviceMotion}Active: Bool

Stop the hardware collecting data

It is a performance hit to be collecting data, so stop during times you don’t need the data.

func stop{Accelerometer,Gyro,Magnetometer,DeviceMotion}Updates()

CS193p

Fall 2017-18

Core Motion
Checking the data (from existing periodic mechanism)

var accelerometerData: CMAccelerometerData?
CMAccelerometerData object provides var acceleration: CMAcceleration
struct CMAcceleration {
 var x: Double // in g (9.8 m/s/s)
 var y: Double // in g
 var z: Double // in g
}
This raw data includes acceleration due to gravity

So, if the device were laid flat, z would be 1.0 and x and y would be 0.0

CS193p

Fall 2017-18

Core Motion
Checking the data (from existing periodic mechanism)

var gyroData: CMGyroData?
CMGyroData object provides var rotationRate: CMRotationRate
struct CMRotationRate {
 var x: Double // in radians/s
 var y: Double // in radians/s
 var z: Double // in radians/s
}
Sign of the rotation data follows right hand rule

The data above will be biased

CS193p

Fall 2017-18

Core Motion
Checking the data (from existing periodic mechanism)

var magnetometerData: CMMagnetometerData?
CMMagnetometerData object provides var magneticField: CMMagneticField
struct CMMagneticField {
 var x: Double // in microteslas
 var y: Double // in microteslas
 var z: Double // in microteslas
}
The data above will be biased

CS193p

Fall 2017-18

CMDeviceMotion
CMDeviceMotion is a “combined” motion data source

It uses information from all the hardware to improve the data from each.

var deviceMotion: CMDeviceMotion?

Acceleration Data in CMDeviceMotion

var gravity: CMAcceleration
var userAcceleration: CMAcceleration // gravity factored out using gyro

Other information in CMDeviceMotion

var rotationRate: CMRotationRate // bias removed from raw data using accelerometer
var attitude: CMAttitude // device’s attitude (orientation) in 3D space
class CMAttitude: NSObject // roll, pitch and yaw are in radians
 var roll: Double // around longitudinal axis passing through top/bottom
 var pitch: Double // around lateral axis passing through sides
 var yaw: Double // around axis with origin at CofG and ⊥ to screen directed down
}
var heading: Double // in degrees, where 0 is north (true or magnetic depending on frame)

CS193p

Fall 2017-18

CMDeviceMotion
Reference Frame

Magnetometer use in CMDeviceMotion can be controlled by setting its reference frame.

Specify this when calling startDeviceMotionUpdates.

xArbitraryZVertical // the default, does not use magnetometer

xArbitraryCorrectedZVertical // uses magnetometer (if available) to correct yaw over time

xMagnetic/TrueNorthZVertical // uses magnetometer for device position/heading in world

These last two may require the user to calibrate the magnetometer.

And for TrueNorth, location information (e.g. GPS/Wifi/Cellular) will also be required.

North frames are necessary for apps that use things like Augmented Reality.

To get heading, for example, you must use a MagneticNorth or TrueNorth reference frame.

Always check to make sure the reference frame you want is available on the device …

static func availableAttitudeReferenceFrames() -> CMAttitudeReferenceFrame

CS193p

Fall 2017-18

Core Motion
Registering a block to receive Accelerometer data

func startAccelerometerUpdatesToQueue(queue: OperationQueue,
 withHandler: CMAccelerometerHandler)
typealias CMAccelerationHandler = (CMAccelerometerData?, Error?) -> Void
queue can be an OperationQueue() you create or Operation.main (or current)

Registering a block to receive Gyro data

func startGyroUpdatesToQueue(queue: OperationQueue,
 withHandler: CMGyroHandler)
typealias CMGyroHandler = (CMGyroData?, Error?) -> Void

Registering a block to receive Magnetometer data

func startMagnetometerUpdatesToQueue(queue: OperationQueue,
 withHandler: CMMagnetometerHandler)
typealias CMMagnetometerHandler = (CMMagnetometerData?, Error?) -> Void

CS193p

Fall 2017-18

Core Motion
Registering a block to receive DeviceMotion data

func startDeviceMotionUpdates(using: CMAttitudeReferenceFrame,
 queue: OperationQueue,
 withHandler: (CMDeviceMotion?, Error?) -> Void)
queue can be an OperationQueue() you create or Operation.mainQueue (or currentQueue)

Errors … CMErrorDeviceRequiresMovement

 CMErrorTrueNorthNotAvailable

 CMErrorMotionActivityNotAvailable

 CMErrorMotionActivityNotAuthorized

CS193p

Fall 2017-18

Core Motion
Setting the rate at which your block gets executed

var accelerometerUpdateInterval: TimeInterval
var gyroUpdateInterval: TimeInterval
var magnetometerUpdateInterval: TimeInterval
var deviceMotionUpdateInterval: TimeInterval

It is okay to add multiple handler blocks

Even though you are only allowed one CMMotionManager
However, each of the blocks will receive the data at the same rate (as set above)
(Multiple objects are allowed to poll at the same time as well, of course.)

CS193p

Fall 2017-18

Accelerometer Over Time
Historical Accelerometer Data

Sometimes you don’t need to look at the accelerometer in real time.

You just want to know what happened over a period of time in the past.

For example, if you want an idea of the user’s physical movement pattern.

The class CMSensorRecorder can record (at 50hz) and then play back accelerometer data.

Not all devices are capable of this (iPhone 7 and later, Apple Watch).

isAccelerometerRecordingAvailable() -> Bool // whether this device can record

Start recording data …

func recordAccelerometer(forDuration: TimeInterval) // keep this short for performance

Retrieving the recorded data …

func accelerometerData(from: Date, to: Date) -> CMSensorDataList // 3 day max

You enumerate over the CMAccelerometerData objects in a CMSensorDataList with for in …

for dataPoint: CMRecordedAccelerometerData in sensorDataList { . . . }

CS193p

Fall 2017-18

Activity Monitoring
Rough estimate of what the user is doing

For example, stationary, walking, running, automotive, or cycling.

You track this with a CMMotionActivityManager (not a CMMotionManager!).

func startActivityUpdates(to: OperationQueue, withHandler: (CMMotionActivity?) -> Void)

CMMotionActivity is one of the above activities.

You can also query historical activity with …

func queryActivityStarting(from: Date, to: Date, to: OperationQueue, withHandler: …)

CS193p

Fall 2017-18

Pedometer
Pedometer

Getting the user’s “step” information only makes sense over time.

Create a CMPedometer and then send it the message …

func startUpdates(from: Date, withHandler: (CMPedometerData?, Error?) -> Void)

The from Date is allowed to be in the past (but only last 7 days are recorded).

Your handler will be called periodically with the struct CMPedometerData which has …

startDate and endDate of the data

numberOfSteps, distance, averageActivePace, and currentPace during the time

also floorsAscended and floorsDescended

Altimeter

Get relative altitude changes.

func startRelativeAltitudeUpdates(to: OperationQueue, withHandler: (CMAltitudeData?, Error?))

CMAltitudeData has both change in altitude in meters and raw atmospheric pressure data.

CS193p

Fall 2017-18

Core Motion
Checking the authorization status of hardware sensors

Some information is considered “private” to the user (e.g. fitness data).

Specifically CMPedometer, CMSensorRecorder, CMMotionActivityManager and CMAltimeter.

iOS will automatically ask the user (once) for permission to access this information.

You can find out what the status is at any time with this static func on each of these.

static func authorizationStatus() -> CMAuthorizationStatus

struct CMAuthorizationStatus {
 case notDetermined // user has not yet been asked
 case restricted // fitness data access disabled in Settings
 case denied // user has explicitly denied your app access
 case authorized // ready to go!
}

Lack of authorization may also show up as an error when you request data.

CS193p

Fall 2017-18

Demo
Playing Card

We’ll make our playing cards be affected by “real gravity” using the accelerometer.

CS193p

Fall 2017-18

UIImagePickerController
Modal view controller to get media from camera or photo library

i.e., you put it up with present(_:animated:completion:)

Usage

1. Create it & set its delegate (it can’t do anything without its delegate)
2. Configure it (source, kind of media, user edibility, etc.)
3. Present it
4. Respond to delegate methods when user is done/cancels picking the media

What the user can do depends on the platform

Almost all devices have cameras, but some can record video, some can not

You can only offer camera or photo library on iPad (not both together at the same time)
As with all device-dependent API, we want to start by check what’s available …
static func isSourceTypeAvailable(sourceType: UIImagePickerControllerSourceType) -> Bool
Source type is .photoLibrary or .camera or .savedPhotosAlbum (camera roll)

CS193p

Fall 2017-18

UIImagePickerController
But don’t forget that not every source type can give video

So, you then want to check ...
static func availableMediaTypes(for: UIImagePickerControllerSourceType) -> [String]?
Depending on device, will return one or more of these ...
kUTTypeImage // pretty much all sources provide this, hardly worth checking for even

kUTTypeLivePhoto // must also say kUTTypeImage for this one to work
kUTTypeMovie // audio and video together, only some sources provide this

You can get even more specific about cameras

(Though usually this is not necessary)
static func isCameraDeviceAvailable(UIImagePickerControllerCameraDevice) -> Bool
 returns .rear or .front
There are other camera-specific interrogations too, for example …
static func isFlashAvailableForCameraDevice(UIImagePickerControllerCameraDevice) -> Bool

These are declared in the MobileCoreServices framework.

import MobileCoreServices

CS193p

Fall 2017-18

UIImagePickerController
Set the source and media type you want in the picker

Example setup of a picker for capturing video (kUTTypeMovie) …

(From here out, UIImagePickerController will be abbreviated UIIPC for space reasons.)
let picker = UIImagePickerController()
let mediaTypeMovie = kUTTypeMovie as String
picker.delegate = self // self must implement UINavigationControllerDelegate too
if UIIPC.isSourceTypeAvailable(.camera) {
 picker.sourceType = .camera
 if let availableTypes = UIIPC.availableMediaTypesForSourceType(.camera) {
 if availableTypes.contains(mediaTypeMovie) {
 picker.mediaTypes = [mediaTypeMovie]
 // proceed to put the picker up
 }
 }
}

CS193p

Fall 2017-18

UIImagePickerController
Editability

var allowsEditing: Bool
If true, then the user will have opportunity to edit the image/video inside the picker.
When your delegate is notified that the user is done, you’ll get both raw and edited versions.

Limiting Video Capture

var videoQuality: UIImagePickerControllerQualityType
.typeMedium // default
.typeHigh
.type640x480
.typeLow
.typeIFrame1280x720 // native on some devices
.typeIFrame960x540 // native on some devices

var videoMaximumDuration: TimeInterval // defaults to 10 minutes

CS193p

Fall 2017-18

UIImagePickerController
Present the picker

present(picker, animated: true, completion: nil)
On iPad, if you are not offering Camera (just photo library), you must present with popover.

If you are offering the Camera on iPad, then full-screen is preferred.

Remember: on iPad, it’s Camera OR Photo Library (not both at the same time).

Delegate will be notified when user is done

func imagePickerController(UIIPC, didFinishPickingMediaWithInfo info: [String:Any]) {
 // extract image/movie data/metadata here from info, more on the next slide
 picker.presentingViewController?.dismiss(animated: true) { }
}

Also dismiss it when cancel happens

func imagePickerControllerDidCancel(UIIPC) {
 picker.presentingViewController?.dismiss(animated: true) { }
}

CS193p

Fall 2017-18

UIImagePickerController
What is in that info dictionary?

UIImagePickerControllerMediaType // kUTTypeImage, kUTTypeMovie
UIImagePickerControllerOriginalImage // UIImage
UIImagePickerControllerEditedImage // UIImage
UIImagePickerControllerImageURL // URL (in a temp location, so move it to keep it)

UIImagePickerControllerCropRect // CGRect (in an NSValue)
UIImagePickerControllerMediaMetadata // Dictionary of info about the image

UIImagePickerControllerLivePhoto // a PHLivePhoto

UIImagePickerControllerPHAsset // a PHAsset (see PHPhotoLibrary)

UIImagePickerControllerMediaURL // URL of the video if kUTTypeMovie

CS193p

Fall 2017-18

UIImagePickerController
Saving taken images or video into the device’s photo library

You can save to the user’s Camera Roll …

func UIImageWriteToSavedPhotosAlbum(
 _ image: UIImage,
 _ target: Any?, // the object to send selector to when finished writing
 _ selector: Selector? // selector to send to target when finished writing
 _ context: UnsafeMutableRawPointer? // passed to the selector
)
It’s a bummer that this isn’t closure-based, but it is what it is.

This is a very simple and convenient way to do this.

But this only makes sense if the user only occasionally would want to save an image.

Otherwise, you’ll want to integrate with the Photos application: checkout PHPhotoLibrary.

Of course, you could also save the image into your own sandbox.

You’d do that if the captured images only make sense inside your own app.

CS193p

Fall 2017-18

UIImagePickerController
In general, much more sophisticated media capture is available

This UIImagePickerController API is pretty simple, but more powerful API exists.

Check out both PHPhotoLibrary and AVCaptureDevice.

CS193p

Fall 2017-18

UIImagePickerController
Overlay View

var cameraOverlayView: UIView
Be sure to set this view’s frame properly.
Camera is always full screen, so use UIScreen.main’s bounds property.
If you use the built-in controls at the bottom, you might want your view to be smaller.

Hiding the normal camera controls (at the bottom)

var showsCameraControls: Bool
Will leave a blank area at the bottom of the screen (camera’s aspect 4:3, not same as screen’s).
With no controls, you’ll need an overlay view with a “take picture” (at least) button.
That button should send takePicture() or (startVideoCapture()) to the picker.

Don’t forget to dismiss when you are done taking pictures.

You can zoom or translate the image while capturing

var cameraViewTransform: CGAffineTransform
For example, you might want to scale the image up to full screen (some of it will get clipped).

CS193p

Fall 2017-18

Core Image and Vision
Processing Images

Core Image is a powerful and efficient framework for applying filters to your images.

Has a couple of hundred filters to choose from (blur, depth, comparison, colors, smoothing, etc.).

Vision framework provides powerful feature detection in images (e.g. faces, barcodes, etc.).

Core Image also has some feature detection API.

Check out Core Image and Vision in the documentation.

CS193p

Fall 2017-18

Demo Code
Download the Emoji Art demo from today’s lecture.

Download the Playing Card demo from today’s lecture.

https://cs193p.stanford.edu/Fall2017/EmojiArtL17.zip
https://cs193p.stanford.edu/Fall2017/PlayingCardL17.zip

