
CS193P IOS APPLICATION DEVELOPMENT FALL 2017

Assignment IV:
Animated Set
Objective

In this assignment you will add animation to your Set game and combine your first
three assignments into one.
This assignment must be submitted using the submit script described here by the start
of lecture a week from Monday (i.e. before lecture 11). You may submit it multiple times
if you wish. Only the last submission before the deadline will be counted.
Be sure to review the Hints section below!
Also, check out the latest in the Evaluation section to make sure you understand what
you are going to be evaluated on with this assignment.

Materials
• You will need your implementation of Assignments 1 and 3.

PAGE OF ASSIGNMENT IV: ANIMATED SET1 11

http://web.stanford.edu/class/cs193p/cgi-bin/drupal/submissions

CS193P IOS APPLICATION DEVELOPMENT FALL 2017

Required Tasks
1. Your application should continue to play a solo game of Set as required by

Assignment 3 (with the caveats below).
2. You must animate the following actions in your set game:

a. the rearrangement of cards. when cards are added or disappear from the game
the cards should move smoothly (not jump instantly) to their new positions.

b. the dealing of new cards. this includes both the initial 12 cards and any time 3
new cards are dealt. cards should fly across the screen from some “deck”
somewhere on screen. the appearance of the deck is up to you. no two cards
should be dealt at the same time though their animations can overlap a bit.

c. the discovery of a match. matched cards should all fly away from where they were
at the same time and bounce around on the screen for a couple of seconds before
snapping to some “discard pile” somewhere on screen. the appearance of the
discard pile is up to you.

d. the flipping over of cards. cards should be dealt face down until they are in
position, then they should be flipped over to reveal the set card contents and after
cards have flown away to the discard pile, at least the top card on the discard pile
should be flipped face down.

3. Your animation implementation must use UIViewPropertyAnimator,
UIDynamicAnimator, and the UIView class method transition(with:…). You will
probably also need a Timer, but it’s not strictly required.

4. Instead of using a swipe gesture to deal 3 more cards, allow users to deal 3 more cards
by tapping on your deck.

5. Automatically perform a “deal 3 more cards” (i.e. simulate tapping on the deck)
whenever a match is revealed.

6. You are not required to support your “rearrange cards” rotation gesture from the last
assignment (see Extra Credit).

7. Add a theme-choosing MVC to your Concentration game in the same way that a
theme chooser was added to Concentration in Lecture 7. This Required Task is
essentially to reproduce Lecture 7, however, you’ll be using your own Concentration
(not the demo one) including your theme code. You are allowed to modify your
Assignment 1 code if necessary. The point of this Required Task is to show us that
you can do what was done with Multiple MVCs in the Lecture 7 demo.

8. Combine the above Set and Concentration games into a single application using a tab
bar controller. This is the application you will submit.

PAGE OF ASSIGNMENT IV: ANIMATED SET2 11

CS193P IOS APPLICATION DEVELOPMENT FALL 2017

9. Your game must work properly and look good in both Landscape and Portrait
orientations on all iPhones and iPads. It should efficiently use all the space available to
it in all circumstances.  

PAGE OF ASSIGNMENT IV: ANIMATED SET3 11

CS193P IOS APPLICATION DEVELOPMENT FALL 2017

Hints
1. It is quite likely that all of your animations can originate from your

updateViewFromModel equivalent. This is just a Hint, not a Required Task.
2. Whenever we want layoutSubviews() to get called immediately (rather than “at some

time in the future that’s convenient”), we don’t call layoutSubviews(), we call
layoutIfNeeded(). Note that this will only actually call layoutSubviews() to lay out
the subviews if, since the last layoutSubviews() was called, a) the bounds of the view
have changed, b) some subview has been added or removed, or c) someone called
setNeedsLayout(). So feel free to call layoutIfNeeded() when you want a view’s
layoutSubviews() method to be called, but also be sure to call setNeedsLayout() any
time you change anything in that view that would cause it to need to lay out its
subviews again.

3. Here is a strategy you can use to attack your animation tasks. This is only a Hint, so
you are welcome to ignore it completely, but if you are finding yourself a little at a loss
for where to start, start here (after making sure you’ve read Hint #1) …
3.a. Start off by simply animating the laying out of your cards. This is very easy to

do with UIViewPropertyAnimator since laying out the cards only changes the
frame property of those views which is one of the animatable properties. It’s
quite possible that you can implement this in 2 lines of code if you’ve properly
implemented your view the holds your cards.

3.b. Implement a placeholder for your “flyaway” animation by simply animating the
transparency (alpha) of the matched cards down 0. You’ll use
UIViewPropertyAnimator (for now) to do this, of course (since alpha is an
animatable property), but eventually you’ll be switching this animation to use
UIDynamicAnimator.

3.c. Once you have the “flyaway” fade working, implement a placeholder for your
“dealing a card” animation by animating the fading of all cards with alpha = 0
back to alpha = 1.

3.d. You should not start this “dealing a card” animation until after your “rearrange
the cards” animation has finished.

3.e. You can even use this mechanism to “deal” out your initial 12 cards. Just put
them out there with alpha = 0 initially and your 3c animation should
automatically “deal” them in.

3.f. Now you have 3 of the 4 animations working (albeit in a primitive form).
3.g. Remember that the “flyaway” and “deal” animations are prompted by different

user actions. The “flyaway” happens when a card is touched that causes a 3-card
match to be revealed. The “deal” animation is prompted when “deal 3 more

PAGE OF ASSIGNMENT IV: ANIMATED SET4 11

CS193P IOS APPLICATION DEVELOPMENT FALL 2017

cards” happens or when the NEXT card AFTER a card that causes a 3-card
match to be revealed is chosen.

3.h. Now go implement the real “deal” animation. All the cards that need to be dealt
are already currently in the right position (but with alpha = 0, so the user can’t
see them). Since they’re invisible, you can jump them over to your deck. Once
they are there, set (no need to animate) their alpha = 1 to make them reappear
(hopefully your deck is drawn in a way that this won’t be disconcerting having this
card just appear out of nowhere). Now you can animate their frames back to
where they started (one by one).

3.i. If your deck is a different size than a card you’re dealing, you can feel free to
change the size of the card when you move it over to the deck (while its alpha =
0 so the user won’t see). Since you’re animating it back using its frame, it will
animate growing or shrinking to the proper size automatically.

3.j. Now get the “flyaway” animation working with UIDynamicAnimator.
3.k. The “flyaway” animation is a completely different animation that the “dealing”

animation, so the timing of them does not have to be coordinated in any way. In
fact, when you eventually implement automatically dealing 3 new cards, they’ll
start flying in at the same time the “flyaway” cards are bouncing around. Cool.

3.l. This also means that the UIViews that are used in the “flyaway” animation will
have to be different than the UIViews being “dealt”. It’s probably best to create
temporary cards for the flyaway, leaving the original cards behind with alpha = 0
(which will cause the “dealing” animation to replace them on the next user
interaction!).

3.m.Don’t even try to implement the “automatic deal 3 new cards” until you have the
above animations working. Once you have them working, this should be a trivial
thing to implement. But if you don’t have them working yet, it might just be
confusing.

3.n. Once your UIDynamicAnimator settles down (and you then flip at least the top
card over), you’ll probably want to remove those cards from your
UIDynamicAnimator so it doesn’t waste its time trying to animate them anymore.

3.o. The flipping animation that UIView.transition(with:…) is doing is modifying
the view’s transform behind the scenes. Thus, you probably only want to do this
on a view that is otherwise un-transformed (i.e. it has the identity transform).
You also don’t want to be animating a view’s frame at the same time you are
animating its transform.

3.p. It might be easier to have your deck and discard pile just start out as fixed points
on the screen at first, then upgrade them to being views later. 

PAGE OF ASSIGNMENT IV: ANIMATED SET5 11

CS193P IOS APPLICATION DEVELOPMENT FALL 2017

4. We haven’t talked about doing autolayout in code (because it’s a bit complicated), but
there is a very easy “old style” autolayout mechanism if all you want to do is have a
subview stay centered or pinned to the superview’s edge(s). Just set the
autoresizingMask var on the subview to, for example …
[.flexibleTopMargin,.flexibleBottomMargin,.flexibleLeftMargin,.flexibleRightMargin]

… if you want to keep the subview centered in its superview. You can read the
documentation for autoresizingMask to find out more.

5. For code cleanliness, you’ll probably want to collect all of your “flyaway” animations
into a UIDynamicBehavior subclass.

6. It’s perfectly legal to have a UIViewPropertyAnimator acting on a view at the same
time that a UIDynamicAnimator is, but they should not be trying to animate the same
property. Note that animating the bounds of a view is not the same as animating its
frame. For example, you can animate the bounds of a view (basically, its size) with one
animator at the same time a different animator is animating its center.

7. Note that you have a dynamic animation that starts off doing one thing (cards flying
around) and then switches to doing another thing (snapping the cards to the discard
pile). Timer might be useful to kick off the second half of this (although there are
other ways to do it as well).

8. When your flyaway animation starts, you might well want the cards to be bouncing off
each other, but when it comes time to snap them home to the discard pile, they
definitely will not want to be bouncing off each other (since they have to stack up on
each other). Dynamic animation is dynamic: you can change any aspect of any of the
behaviors at any time and you can add or remove items from any behavior at any time
and it will immediately react.

9. Your flyaway animation will look a lot cooler if you allow the cards to rotate as they
bounce around. And you’ll definitely want to adjust the elasticity of their collisions to
get a pleasing amount of chaos.

10. Don’t forget to always keep a strong pointer to your UIDynamicAnimator so that it does
not leave the heap on you!

11. Your “flip the top card on the discard pile face down” animation has to happen after
your flyaway animation finishes. You’ll need UIDynamicAnimator’s delegate to detect
that finishing.

12. There is an option in the Attributes Inspector for a view in InterfaceBuilder to either
have a view clip its subviews to its bounds or not. Make sure you have that set
correctly if you are trying to draw a subview outside the bounds of its superview (even
if you are doing so via an animation).

13. As you do all of this, be careful to be operating in the right coordinate system. You
have a lot of coordinate systems going on here. There is the coordinate system of
your grid of cards, the coordinate system of your UIDynamicAnimator’s referenceView

PAGE OF ASSIGNMENT IV: ANIMATED SET6 11

CS193P IOS APPLICATION DEVELOPMENT FALL 2017

(depending on which view you choose for that), the coordinate system of your deck
and discard pile, etc. UIView has an awesome set of methods for converting points
and rects between coordinate systems. Check out the many convert(, to/from:)
methods in UIView.

14. Don’t forget that the code in prepare(for:sender:) is executing before the outlets in
the destination MVC have been set.

15. Depending on how you implement your animations, there is some small chance they
might collide with the animations that happen when you rotate the device. Don’t
worry about this case for this assignment, but generally it’s a good idea to design
animations that head toward a position that always resolves to the same thing that
calling layoutSubviews() does (since that’s what happens when you rotate).
Continuing animations sometimes have to pause or adjust themselves on a rotation so
that, post rotation, all the items are on-screen and continuing to animate in a sensible
way. Your application does not have any continuing animations (they are all
transient), so hopefully this won’t be a problem for you.

16. Don’t forget the last Required Task!

PAGE OF ASSIGNMENT IV: ANIMATED SET7 11

CS193P IOS APPLICATION DEVELOPMENT FALL 2017

Things to Learn
Here is a partial list of concepts this assignment is intended to let you gain practice with
or otherwise demonstrate your knowledge of.
1. UIViewPropertyAnimator
2. UIDynamicAnimator
3. Timer
4. UIView.transition(with:duration:options:animations:completion:)
5. UINavigationController
6. UISplitViewController
7. UITabBarController
8. Segues
9. Autolayout 

PAGE OF ASSIGNMENT IV: ANIMATED SET8 11

CS193P IOS APPLICATION DEVELOPMENT FALL 2017

Evaluation
In all of the assignments this quarter, writing quality code that builds without warnings
or errors, and then testing the resulting application and iterating until it functions
properly is the goal.
Here are the most common reasons assignments are marked down:

• Project does not build.
• One or more items in the Required Tasks section was not satisfied.
• A fundamental concept was not understood.
• Project does not build without warnings.
• Code is visually sloppy and hard to read (e.g. indentation is not consistent, etc.).
• Violates MVC.
• UI is a mess. Things should be lined up and appropriately spaced to “look nice.”
• Improper object-oriented design including proper use of value types versus

reference types.
• Improper access control (i.e. private not used appropriately).
• Your solution is difficult (or impossible) for someone reading the code to

understand due to lack of comments, poor variable/method names, poor solution
structure, long methods, etc.

Often students ask “how much commenting of my code do I need to do?” The answer
is that your code must be easily and completely understandable by anyone reading it.
You can assume that the reader knows the iOS API, but should not assume that they
already know your (or any) solution to the assignment.

PAGE OF ASSIGNMENT IV: ANIMATED SET9 11

CS193P IOS APPLICATION DEVELOPMENT FALL 2017

Extra Credit
We try to make Extra Credit be opportunities to expand on what you’ve learned this
week. Attempting at least some of these each week is highly recommended to get the
most out of this course. How much Extra Credit you earn depends on the scope of the
item in question.
If you choose to tackle an Extra Credit item, mark it in your code with comments so your
grader can find it.
1. Make your rotation gesture from the last assignment work and be animated. You

might get this “for free” if you implemented Required Task 2a well.
2. Take EC1 to another level by using some wacky animation (cards spinning or flying

around or some such).
3. Make cards being dealt not only fly out, but also spin a couple of times. There is one

trick to animating spinning (which you do with the view’s transform). You have to
make it be a chained animation where you spin 1/3 of the way around during the first
step, then 1/3 more in the second step, and the final 1/3 in a third step. Why?
Because if you just set your transform to be “rotate 2π”, you’d be right back to where
you started and thus no animation will happen because none will be necessary.
Similarly, if you try to go halfway around and then the other half, it might well rotate
back the way it came in the second half rather than continuing around to the end
point. Remember that it is perfectly fine to have two view property animators going
simultaneously if they are each animating different properties (e.g. center and
transform). However, see Hint 3o above (you can’t animate the frame and transform
properties simultaneously). So if your card dealing animation is also, for example,
animating the size of the view (because perhaps your deck is a different size than the
cards sometimes), you’ll have to either do that with the transform property (in your
spin animations) or using the bounds property (which is only a transient animation
property, so when your card arrives and stops spinning, you’d have to update its
frame).

4. Make the name of the theme the user chooses in your Concentration game appear in
the UI while the game is being played. On iPhone, this is easy since you’re playing
inside a UINavigationController and so you can just set your
ConcentrationViewController’s navigationItem’s title to be the name of the
theme. On the iPad, it’s more difficult because the detail of the split view is not in a
navigation controller and thus has no title bar. A simple solution to this is to embed
the split view detail in a navigation controller too. But doing this will require you to
modify your code because the detail will no longer be a
ConcentrationViewController, it’s going to be a UINavigationController. You’ll
have to use UINavigationController methods (probably visibleViewController) to
“get at” the ConcentrationViewController inside to prepare it.

PAGE OF ASSIGNMENT IV: ANIMATED SET10 11

CS193P IOS APPLICATION DEVELOPMENT FALL 2017

5. Create customized glyphs for your tab bar items. Apple’s Human Interface
Guidelines document covers the requirements for these.

PAGE OF ASSIGNMENT IV: ANIMATED SET11 11

https://developer.apple.com/ios/human-interface-guidelines/icons-and-images/custom-icons/
https://developer.apple.com/ios/human-interface-guidelines/icons-and-images/custom-icons/

